{-# LANGUAGE GADTs #-}
module Language.Drasil.ModelExpr.Convert where
import Data.Bifunctor (bimap)
import Language.Drasil.Space
(RealInterval(..), DiscreteDomainDesc, DomainDesc(BoundedDD))
import qualified Language.Drasil.Expr.Lang as E
import Language.Drasil.ModelExpr.Lang
assocArithOper :: E.AssocArithOper -> AssocArithOper
assocArithOper :: AssocArithOper -> AssocArithOper
assocArithOper AssocArithOper
E.AddI = AssocArithOper
AddI
assocArithOper AssocArithOper
E.AddRe = AssocArithOper
AddRe
assocArithOper AssocArithOper
E.MulI = AssocArithOper
MulI
assocArithOper AssocArithOper
E.MulRe = AssocArithOper
MulRe
assocBoolOper :: E.AssocBoolOper -> AssocBoolOper
assocBoolOper :: AssocBoolOper -> AssocBoolOper
assocBoolOper AssocBoolOper
E.And = AssocBoolOper
And
assocBoolOper AssocBoolOper
E.Or = AssocBoolOper
Or
uFunc :: E.UFunc -> UFunc
uFunc :: UFunc -> UFunc
uFunc UFunc
E.Abs = UFunc
Abs
uFunc UFunc
E.Log = UFunc
Log
uFunc UFunc
E.Ln = UFunc
Ln
uFunc UFunc
E.Sin = UFunc
Sin
uFunc UFunc
E.Cos = UFunc
Cos
uFunc UFunc
E.Tan = UFunc
Tan
uFunc UFunc
E.Sec = UFunc
Sec
uFunc UFunc
E.Csc = UFunc
Csc
uFunc UFunc
E.Cot = UFunc
Cot
uFunc UFunc
E.Arcsin = UFunc
Arcsin
uFunc UFunc
E.Arccos = UFunc
Arccos
uFunc UFunc
E.Arctan = UFunc
Arctan
uFunc UFunc
E.Exp = UFunc
Exp
uFunc UFunc
E.Sqrt = UFunc
Sqrt
uFunc UFunc
E.Neg = UFunc
Neg
uFuncB :: E.UFuncB -> UFuncB
uFuncB :: UFuncB -> UFuncB
uFuncB UFuncB
E.Not = UFuncB
Not
uFuncVV :: E.UFuncVV -> UFuncVV
uFuncVV :: UFuncVV -> UFuncVV
uFuncVV UFuncVV
E.NegV = UFuncVV
NegV
uFuncVN :: E.UFuncVN -> UFuncVN
uFuncVN :: UFuncVN -> UFuncVN
uFuncVN UFuncVN
E.Norm = UFuncVN
Norm
uFuncVN UFuncVN
E.Dim = UFuncVN
Dim
arithBinOp :: E.ArithBinOp -> ArithBinOp
arithBinOp :: ArithBinOp -> ArithBinOp
arithBinOp ArithBinOp
E.Frac = ArithBinOp
Frac
arithBinOp ArithBinOp
E.Pow = ArithBinOp
Pow
arithBinOp ArithBinOp
E.Subt = ArithBinOp
Subt
boolBinOp :: E.BoolBinOp -> BoolBinOp
boolBinOp :: BoolBinOp -> BoolBinOp
boolBinOp BoolBinOp
E.Impl = BoolBinOp
Impl
boolBinOp BoolBinOp
E.Iff = BoolBinOp
Iff
eqBinOp :: E.EqBinOp -> EqBinOp
eqBinOp :: EqBinOp -> EqBinOp
eqBinOp EqBinOp
E.Eq = EqBinOp
Eq
eqBinOp EqBinOp
E.NEq = EqBinOp
NEq
laBinOp :: E.LABinOp -> LABinOp
laBinOp :: LABinOp -> LABinOp
laBinOp LABinOp
E.Index = LABinOp
Index
ordBinOp :: E.OrdBinOp -> OrdBinOp
ordBinOp :: OrdBinOp -> OrdBinOp
ordBinOp OrdBinOp
E.Lt = OrdBinOp
Lt
ordBinOp OrdBinOp
E.Gt = OrdBinOp
Gt
ordBinOp OrdBinOp
E.LEq = OrdBinOp
LEq
ordBinOp OrdBinOp
E.GEq = OrdBinOp
GEq
vvvBinOp :: E.VVVBinOp -> VVVBinOp
vvvBinOp :: VVVBinOp -> VVVBinOp
vvvBinOp VVVBinOp
E.Cross = VVVBinOp
Cross
vvvBinOp VVVBinOp
E.VAdd = VVVBinOp
VAdd
vvvBinOp VVVBinOp
E.VSub = VVVBinOp
VSub
vvnBinOp :: E.VVNBinOp -> VVNBinOp
vvnBinOp :: VVNBinOp -> VVNBinOp
vvnBinOp VVNBinOp
E.Dot = VVNBinOp
Dot
nvvBinOp :: E.NVVBinOp -> NVVBinOp
nvvBinOp :: NVVBinOp -> NVVBinOp
nvvBinOp NVVBinOp
E.Scale = NVVBinOp
Scale
expr :: E.Expr -> ModelExpr
expr :: Expr -> ModelExpr
expr (E.Lit Literal
a) = Literal -> ModelExpr
Lit Literal
a
expr (E.AssocA AssocArithOper
ao [Expr]
es) = AssocArithOper -> [ModelExpr] -> ModelExpr
AssocA (AssocArithOper -> AssocArithOper
assocArithOper AssocArithOper
ao) forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map Expr -> ModelExpr
expr [Expr]
es
expr (E.AssocB AssocBoolOper
bo [Expr]
es) = AssocBoolOper -> [ModelExpr] -> ModelExpr
AssocB (AssocBoolOper -> AssocBoolOper
assocBoolOper AssocBoolOper
bo) forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map Expr -> ModelExpr
expr [Expr]
es
expr (E.C UID
u) = UID -> ModelExpr
C UID
u
expr (E.FCall UID
u [Expr]
es) = UID -> [ModelExpr] -> ModelExpr
FCall UID
u (forall a b. (a -> b) -> [a] -> [b]
map Expr -> ModelExpr
expr [Expr]
es)
expr (E.Case Completeness
c [(Expr, Expr)]
ces) = Completeness -> [(ModelExpr, ModelExpr)] -> ModelExpr
Case Completeness
c (forall a b. (a -> b) -> [a] -> [b]
map (forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap Expr -> ModelExpr
expr Expr -> ModelExpr
expr) [(Expr, Expr)]
ces)
expr (E.Matrix [[Expr]]
es) = [[ModelExpr]] -> ModelExpr
Matrix forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall a b. (a -> b) -> [a] -> [b]
map Expr -> ModelExpr
expr) [[Expr]]
es
expr (E.UnaryOp UFunc
u Expr
e) = UFunc -> ModelExpr -> ModelExpr
UnaryOp (UFunc -> UFunc
uFunc UFunc
u) (Expr -> ModelExpr
expr Expr
e)
expr (E.UnaryOpB UFuncB
u Expr
e) = UFuncB -> ModelExpr -> ModelExpr
UnaryOpB (UFuncB -> UFuncB
uFuncB UFuncB
u) (Expr -> ModelExpr
expr Expr
e)
expr (E.UnaryOpVV UFuncVV
u Expr
e) = UFuncVV -> ModelExpr -> ModelExpr
UnaryOpVV (UFuncVV -> UFuncVV
uFuncVV UFuncVV
u) (Expr -> ModelExpr
expr Expr
e)
expr (E.UnaryOpVN UFuncVN
u Expr
e) = UFuncVN -> ModelExpr -> ModelExpr
UnaryOpVN (UFuncVN -> UFuncVN
uFuncVN UFuncVN
u) (Expr -> ModelExpr
expr Expr
e)
expr (E.ArithBinaryOp ArithBinOp
a Expr
l Expr
r) = ArithBinOp -> ModelExpr -> ModelExpr -> ModelExpr
ArithBinaryOp (ArithBinOp -> ArithBinOp
arithBinOp ArithBinOp
a) (Expr -> ModelExpr
expr Expr
l) (Expr -> ModelExpr
expr Expr
r)
expr (E.BoolBinaryOp BoolBinOp
b Expr
l Expr
r) = BoolBinOp -> ModelExpr -> ModelExpr -> ModelExpr
BoolBinaryOp (BoolBinOp -> BoolBinOp
boolBinOp BoolBinOp
b) (Expr -> ModelExpr
expr Expr
l) (Expr -> ModelExpr
expr Expr
r)
expr (E.EqBinaryOp EqBinOp
e Expr
l Expr
r) = EqBinOp -> ModelExpr -> ModelExpr -> ModelExpr
EqBinaryOp (EqBinOp -> EqBinOp
eqBinOp EqBinOp
e) (Expr -> ModelExpr
expr Expr
l) (Expr -> ModelExpr
expr Expr
r)
expr (E.LABinaryOp LABinOp
la Expr
l Expr
r) = LABinOp -> ModelExpr -> ModelExpr -> ModelExpr
LABinaryOp (LABinOp -> LABinOp
laBinOp LABinOp
la) (Expr -> ModelExpr
expr Expr
l) (Expr -> ModelExpr
expr Expr
r)
expr (E.OrdBinaryOp OrdBinOp
o Expr
l Expr
r) = OrdBinOp -> ModelExpr -> ModelExpr -> ModelExpr
OrdBinaryOp (OrdBinOp -> OrdBinOp
ordBinOp OrdBinOp
o) (Expr -> ModelExpr
expr Expr
l) (Expr -> ModelExpr
expr Expr
r)
expr (E.VVVBinaryOp VVVBinOp
v Expr
l Expr
r) = VVVBinOp -> ModelExpr -> ModelExpr -> ModelExpr
VVVBinaryOp (VVVBinOp -> VVVBinOp
vvvBinOp VVVBinOp
v) (Expr -> ModelExpr
expr Expr
l) (Expr -> ModelExpr
expr Expr
r)
expr (E.VVNBinaryOp VVNBinOp
v Expr
l Expr
r) = VVNBinOp -> ModelExpr -> ModelExpr -> ModelExpr
VVNBinaryOp (VVNBinOp -> VVNBinOp
vvnBinOp VVNBinOp
v) (Expr -> ModelExpr
expr Expr
l) (Expr -> ModelExpr
expr Expr
r)
expr (E.NVVBinaryOp NVVBinOp
v Expr
l Expr
r) = NVVBinOp -> ModelExpr -> ModelExpr -> ModelExpr
NVVBinaryOp (NVVBinOp -> NVVBinOp
nvvBinOp NVVBinOp
v) (Expr -> ModelExpr
expr Expr
l) (Expr -> ModelExpr
expr Expr
r)
expr (E.Operator AssocArithOper
ao DiscreteDomainDesc Expr Expr
dd Expr
e) = forall (t :: RTopology).
AssocArithOper
-> DomainDesc t ModelExpr ModelExpr -> ModelExpr -> ModelExpr
Operator (AssocArithOper -> AssocArithOper
assocArithOper AssocArithOper
ao) (DiscreteDomainDesc Expr Expr
-> DiscreteDomainDesc ModelExpr ModelExpr
domainDesc DiscreteDomainDesc Expr Expr
dd) (Expr -> ModelExpr
expr Expr
e)
expr (E.RealI UID
u RealInterval Expr Expr
ri) = UID -> RealInterval ModelExpr ModelExpr -> ModelExpr
RealI UID
u (RealInterval Expr Expr -> RealInterval ModelExpr ModelExpr
realInterval RealInterval Expr Expr
ri)
realInterval :: RealInterval E.Expr E.Expr -> RealInterval ModelExpr ModelExpr
realInterval :: RealInterval Expr Expr -> RealInterval ModelExpr ModelExpr
realInterval (Bounded (Inclusive
li, Expr
l) (Inclusive
ri, Expr
r)) = forall a b. (Inclusive, a) -> (Inclusive, b) -> RealInterval a b
Bounded (Inclusive
li, Expr -> ModelExpr
expr Expr
l) (Inclusive
ri, Expr -> ModelExpr
expr Expr
r)
realInterval (UpTo (Inclusive
i, Expr
e)) = forall a b. (Inclusive, a) -> RealInterval a b
UpTo (Inclusive
i, Expr -> ModelExpr
expr Expr
e)
realInterval (UpFrom (Inclusive
i, Expr
e)) = forall b a. (Inclusive, b) -> RealInterval a b
UpFrom (Inclusive
i, Expr -> ModelExpr
expr Expr
e)
domainDesc :: DiscreteDomainDesc E.Expr E.Expr -> DiscreteDomainDesc ModelExpr ModelExpr
domainDesc :: DiscreteDomainDesc Expr Expr
-> DiscreteDomainDesc ModelExpr ModelExpr
domainDesc (BoundedDD Symbol
s RTopology
rt Expr
l Expr
r) = forall a b.
Symbol -> RTopology -> a -> b -> DomainDesc 'Discrete a b
BoundedDD Symbol
s RTopology
rt (Expr -> ModelExpr
expr Expr
l) (Expr -> ModelExpr
expr Expr
r)